果壳活性炭以优质核桃壳、杏壳、桃壳为原料,采用炭化、活化、过热蒸汽催化等系列生产工艺精制而成,外观呈黑色不定型颗粒状,优点是耐磨强度好,孔隙结构发达,比表面积大,吸附性能强,化学性能稳定,易再生、经济耐用,适用于高纯度的生活饮用水,工业用水和废
水处理的深度净化脱氯,脱色,除臭和黄金提炼等方面。广泛应用于生活、工业、液相吸附、水质净化和空气净化处理。特别适用于电厂、石化、
污水处理厂、炼油厂、印染纺织业、食品饮料、医药用水、电子高
纯水、生活应用水、工业中水回用等行业。
果壳活性炭的应用
在这里主要介绍果壳活性炭三方面的应用
1废水处理:由于果壳活性炭对水的预处理要求很高,而且活性炭的价格昂贵,因此在废水处理中,活性炭主要用来去除废水中的微量污染物,以达到深度净化的目的。果壳活性炭可以处理含铬废水、含氰废水、焊工废水、含酚废水、含甲醇废水等。
2污水处理:果壳活性炭用于水净化及污水处理,微过滤是一种精密过滤技术。
3反渗透:反渗透系统的水源一般为天然水,而天然水中的有机物含量复杂,研究认为,果壳活性炭对分子量在500~3000的有机物有很好的去除效果。
果壳活性炭的物理化学性能分析
碘值≥1000mg/g
充填密度0.55-0.6g/cm3
总孔容积>0.9cm3/g 强度≥90%
苯粉吸附率≥450mg/g PH值≥7
果壳活性炭的注意事项
1、
果壳活性炭在运输过程中,防止与坚硬物质混状,不可踩、踏,以防炭粒
破碎,影响质量。
2、储存应储存于多孔型吸附剂,所以在运输储存和使用过程中,都要**防止水浸,因水浸后,大量水充满活性空隙,使其失去作用。
3、防止
焦油类物质在使用过程中,应禁止焦油类物质带入活性炭床,以免堵塞活性炭空隙,使其失去吸附作用。**好有除焦设备净化气体。
4、防火活性炭在储存或运输时,防止与火源直接接触,以防着火、活性炭再生时避免进氧并再生彻底,再生后必须用蒸汽冷却降至80℃以下,否则温度高,遇氧,活性炭自燃。
影响果壳活性炭吸附的主要因素
①活性炭吸附剂的性质
其表面积越大,吸附能力就越强;
活性炭是非极性分子,易于吸附非极性或极性很低的吸附质;活性炭吸附剂颗粒的大小,细孔的构造和分布情况以及表面化学性质等对吸附也有很大的影响。
②吸附质的性质
取决于其溶解度、表面自由能、极性、吸附质分子的大小和不饱和度、附质的浓度等
③废水PH值
活性炭一般在酸性溶液中比在碱性溶液中有较高的吸附率。
PH值会对吸附质在水中存在的状态及溶解度等产生影响,从而影响吸附效果。
④共存物质
共存多种吸附质时,活性炭对某种吸附质的吸附能力比只含该种吸附质时的吸附能力差
⑤温度
温度对活性炭的吸附影响较小
⑥接触时间
应保证活性炭与吸附质有一定的接触时间,使吸附接近平衡,充分利用吸附能力。
果壳活性炭化学性
活性炭的吸附除了物理吸附,还有化学吸附。活性炭的吸附性既取决于孔隙结构,又取决于化学组成。
活性炭不仅含碳,而且含少量的化学结合、功能团开工的氧和氢,例如羰基、羧基、酚类、内酯类、醌类、醚类。这些表面上含有的氧化物和络合物,有些来自原料的衍生物,有些是在活化时、活化后由空气或水蒸气的作用而生成。有时还会生成表面硫化物和氯化物。在活化中原料所含矿物质集中到活性炭里成为灰分,灰分的主要成分是碱
金属和碱土金属的盐类,如碳酸盐和磷酸盐等。
这些灰分含量可经水洗或酸洗的处理而降低。
果壳活性炭催化性
活性炭在许多吸附过程中伴有催化反应,表现出催化剂的活性。例如活性炭吸附二氧化硫经催化氧化变成三氧化硫。
由于活性炭有特异的表面含氧化合物或络合物的存在,对多种反应具有催化剂的活性,例如使氯气和一氧化碳生成光气。
由于活性炭和载持物之间会形成络合物,这种络合物催化剂使催化活性大增,例如载持钯盐的活性炭,即使没有铜盐的催化剂存在,烯烃的氧化反应也能催化进行,而且速度快、选择性高。
由于活性炭具有发达的细孔结构、巨大的内表面积和很好的耐热性、耐酸性、耐碱性,可作为催化剂的载体。例如,有机化学中加氢、脱氢环化、异构化等的反应中,活性炭是铂、钯催化剂的优良载体。
(1)粒度:采用一套标准筛筛分法,求出留在和通过每只筛子的活性炭重量,表示粒度分布。
(2)静观密度或堆密度:饮食孔隙容积和颗粒间空隙容积的单位体积活性炭的重量。
(3)体积密度和颗粒密度:饮食孔隙容积而不饮食颗粒间空隙容积的单位体积活性炭的重量。
(4)强度:即活性炭的耐破碎性。
(5)耐磨性:即耐磨损或抗磨擦的性能。